Work by Alex Paix from the Seydoux Lab:

"Homology-directed repair (HDR) of double-strand DNA breaks is a promising method for genome editing, but is thought to be less efficient than error-prone nonhomologous end joining in most cell types. We have investigated HDR of double-strand breaks induced by CRISPR-associated protein 9 (Cas9) in Caenorhabditis elegans. We find that HDR is very robust in the C. elegans germline. Linear repair templates with short (∼30-60 bases) homology arms support the integration of base and gene-sized edits with high efficiency, bypassing the...

We highlight the research of the Regot Lab:

 

A fundamental property of living cells is their extraordinary ability to sense and respond to a changing environment. In higher eukaryotes, malfunctioning of signaling networks has many devastating consequences such as cancer, diabetes or autoimmunity. Such consequences arise from the inability of cells to properly evaluate information and cooperate. Our main focus is to understand how individual cells use signaling networks to integrate information, and eventually coordinate collective cell behaviors.

...

Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized...