Overview    |    Faculty    |    Secondary Faculty    |    Staff    |    Graduate Students    |    Postdoctoral Fellows

Faculty profile

Duojia D.J. Pan Photo

Curriculum Vitae
Bibliography
Lab Web Page

Duojia D.J. Pan - Professor
Molecular Biology & Genetics

725 N. Wolfe Street
PCTB 714A
Baltimore, MD 21205

Office: 410-502-3179

djpan@jhmi.edu

Assistant:
Molecular Genetics of Tumor Suppressor Genes and Oncogenes
The control of organ size is a long-standing puzzle in developmental biology. My laboratory uses Drosophila and mice as model systems to investigate size-control mechanisms in normal development and their pathological roles in cancer. Our general approach is to use Drosophila as a genetic tool to discover size-control genes. We then use a combination of genetics and biochemistry to place these genes into signaling networks. Finally, we use mouse genetics to investigate how the size-control mechanisms we have uncovered in Drosophila regulate tissue homeostasis in mammals. With these concerted efforts, we aim to decipher the general mechanisms underlying control of organ size in animals.

To discover size-control genes, we conducted genetic screens in Drosophila for mutations that result in overgrowth of adult structures. These overgrowth mutants can be broadly divided into two classes: those associated with an increase in cell size and those associated with an increase in cell number. Earlier studies from my laboratory focused on the cell-size mutants, which led to the discovery of a cell size-controlling pathway that involves the tuberous sclerosis tumor suppressors Tsc1 and Tsc2, the small GTPase Rheb, and the protein kinase TOR. The functional link between Tsc1 and Tsc2 and TOR uncovered in Drosophila paved the way for the clinical development of mTOR inhibitor everolimus in the treatment of subependymal giant cell astrocytoma associated with tuberous sclerosis.

Much of our recent work focused on the overgrowth mutants associated with an increase in cell number. These studies led us to the discovery of the Hippo signaling pathway, which plays a critical role in stopping organ growth by simultaneously promoting cell death and cell cycle exit as cells enter the differentiation phase of organogenesis. In Drosophila, the Ste20-like kinase Hippo (Hpo) phosphorylates and activates the NDR family kinase Warts (Wts). Wts, in turn, phosphorylates and inactivates the oncoprotein Yorkie (Yki) by excluding it from the nucleus, where it normally functions as a coactivator for the DNA-binding transcription factor Scalloped (Sd). Building on insights from Drosophila, we and others further delineated a mammalian Hippo pathway that links the mammalian homologues of Hpo (Mst1/2), Wts (Lats1/2), Yki (YAP), and Sd (TEAD/TEF family members) in an analogous signaling cascade. Using a conditional YAP transgenic mouse model, we showed that the mammalian Hippo pathway is a potent regulator of organ size and that its dysregulation leads to tumorigenesis in mammals.

Our current and future research directions include: 1) elucidating the composition, mechanism and regulation of Hippo signaling using Drosophila as a model; 2) understanding the role of Hippo signaling in mammalian development, regeneration and tumorigenesis using mouse genetics; 3) investigating the ancestral role of Hippo signaling in unicellular organisms; 4) developing small-molecule modulators of the Hippo pathway for cancer and regenerative medicine.
Relevant Publications:

Liu-Chittenden, Y., Huang, B., Shim J.S., Chen, Q., Lee, S-J, Anders, R.A., Liu, J.O. and Pan, D. (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev., 26: 1300-1305.
PubMed Abstract

Sebé-Pedrós, A., Zheng, Y., Ruiz-Trillo, I., and Pan, D. (2012) Premetazoan origin of the Hippo signaling pathway. Cell Reports, 1: 13-20.
PubMed Abstract​ 

Cai, J., Zhang, N., Zheng, Y., de Wilde, R.F., Maitra, A., and Pan, D. (2010) The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev., 24: 2383-2388.
Genes & Development


Pan, D. (2010) The Hippo signaling pathway in development and cancer. Dev. Cell, 19: 491-505.
Developmental Cell

Zhang, N., Bai, H., David, K.K., Dong, J., Zheng Y., Cai, J., Giovannini, M., Liu, P., Anders, A.A., and Pan, D. (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell, 19: 27-38.
Developmental Cell

Ling, C., Zheng, Y., Yin, F., Yu, J., Huang, J., Hong, Y., Wu, S., and Pan, D. (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl. Acad. Sci. USA, 107: 10532-10537.
Natl. Acad. Sci.

Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W-M., and Pan, D. (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell, 18: 288-299.
Developmental Cell

Wu, S., Liu, Y., Zheng, Y., Dong, J., and Pan, D. (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell, 14: 388-98. 
PubMed Abstract 

Dong, J., Feldman, G., Huang, J., Wu, S., Zhang, N., Comerford, S. A., Gayyed, M. F., Anders, R. A., Maitra, A., and Pan, D. (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120-1133. 
PubMed Abstract

Huang, J., Wu, S., Barrera, J., Matthews, K. and Pan, D. (2005) The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122: 421-434.
PubMed Abstract 

Wu, S., Huang, J., Dong, J. and Pan, D. (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114: 445-456.
PubMed Abstract

Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A. and Pan, D. (2003) Rheb is a direct target of the tuberous sclerosis tumor suppressor proteins. Nature Cell Biol. 5: 578-581. 
PubMed Abstract

Gao, X., Zhang, Y., Arrazola, P., Hino, O., Kobayashi, T., Yeung, R. S., Ru, B. and Pan, D. (2002) Tsc tumor suppressor proteins antagonize amino-acid-TOR signaling. Nature Cell Biol. 4: 699-704. 
PubMed Abstract​ 

Gao, X. and Pan, D. (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15: 1383-1392. 
PubMed Abstract

Graduate Program AffiliationsBiochemistry, Cellular & Molecular Biology (BCMB)

 

Copyright © 2008 Johns Hopkins University. All Rights Reserved.
Site designed by Academic Web Pages.